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Abstract

A solar telescope has been built at Stanford University to

study the organization and evolution of large-scale solar magnetic

fields and velocities. The observations are made using a Babcock-

type magnetograph which is connected to a 22.9m vertical Littrow

spectrograph. Sun-as-a-star integrated light measurements of the

mean solar magnetic field have been made daily since May 1975. The

typical mean field magnitude has been about 0.15 gauss with typical

measurement error less than 0.05 gauss, The mean field polarity

pattern is essentially identical to the interplanetary magnetic

field sector structure (seen near the earth with a 4 day lag).

The differences in the observed structures can be understood in terms

of a "warped current sheet' s model.
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THE MEAN MAGNETIC FIELD OF THE SUN:

OBSERVATIONS AT STANFORD

by

Philip If. Scherrer
John M. Wilcox
Leif Svalgaa-d

Thomas L. Duvall, Jr.
Phil H. Dittmer

Eric K. Gustafson

Institute for Plasma Research

Stanford University
Stanford, California

Introduction

A solar telescope has been built at Stanford University to study

the organization and evolution of large—scale solar magnetic fields and

velocities. The primary objective of building the new observatory is

to permit dedicated synoptic observations of the large-scale structures.

The main observing program to date has been sun-as-a-star integrated

light observations of the mean solar magnetic field. The instrument and

mean field observations will be described in this paper.

The Instrument

The need for a solar observing instrument designed specifically

to study large-scale structure of magnetic fields and velocities has

been clear for several years.	 For such observations an instrument

should be able to measure the average magnetic field and velocity over

large regions (arc-minutes to full disk resolution) with negligible

magnetic zero level errors and sensitivity which does not vary for many

rotations. The design emphasis should be far precision rather than

spatial resolution and for stability rather than temporal resolution.

The instrument at Stanford was designed with these goals in mind. The

goal for magnetic observations was (for a several mi. , ute observation)

an error of less than 0.1 gauss. The goal for velocity observations

was a sensitivity in the m/s range. To achieve thes• goals mechanical

1
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and electrical stability was considered to be of greatest importance.

The preliminary design of the instrument was begun in the summer

of 1972 with the detailed design and construction beginning in 1973. The

installation of the telescope was complete in the fall of 1974 and the

daily observing program commenced May 16, 1975. The instrument was

designed and built by the authors and the Special Projects Group led

by Jack Franck at the Lawrence Berkeley Laboratory of the University of

California at Berkeley. The solar telescope and magnetograph is currently

installed at the Stanford Solar Observatory which is located in the foot-

hills about 2 km south of the Stanford University campus center (Figure 1).

A schematic layout of the optics is shown in Figure 2. The sun-

light is directed into the telescope by 33 cm coelostat and 25 cm second

flat mirrors. There are two objective lens positions. The north one is

presently used to produce an image for a guiding system which controls

the second flat angle. There is a choice of two lenses which can be

mounted at the south position depending on the observation to be made.

The mirrors and lenses are mounted on a rigid steel structure attached

to the concrete pyramid building and protected with a rotating dome.

The lenses are mounted 6.5 m above the spectrograph entrance aperture.

The spectrograph is located in a 2 m pit 23 m deep. The diffraction

grating (33cm by 15cm with 632 rulings per mm) and Littrow lens (15 cm

with 22.9 m focal length) are mounted in a steel frame attached to a

2 m by 3 m concrete block at the bottom of the pit. The spectrograph

entrance aperture, exit slit assembly, phototubes, and magnetograph

optics are mounted at "tatle top e height in the observing room (Figure 3).

The spectrograph entrance aperture is an image slicer followed

by a slit. The image slicer has a 9 mm by 9 mm aperture and is followed

1-1

by a 0.8 mm by 100 mm slit. The individual mirrors in the image

slicer are slightly tilted to eliminate the need for a field lens.

The spectrograph exit slit assembly (as is the rest of the spectrograph)

is similar to that at the bit. Wilson 150 ft-Tower Telescope. The slits

consist of prisms and blinds motmted on ways and positioned with a lead

2
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screw. The screw moves the slits in the direction of dispersion ( Figure

2 'nsert). When the slits are positioned on a line ( the position is

maintained by a servo system) the angle of the screw is a measure of

the doppler shift. The computer ( see below) can control the grating

angle and slit assembly position so the observing line can be auto-

matically selected.

The magnetograph is of the Babcock type. The line -of-sight

component of the magnetic field is observed by measuring the amount

and sense of circular polarization in the wings of an absorption line

(e.g. Beckers,1968). The arrangement is similar to that at the tilt. Wilson

150 ft-Tower Telescope described by Howard (1974) and }Toward, et al.

( 1968)•	 The magnetic signal is the amplitude of the 110 Hz (KDP

modulation frequency) square wave which is the difference in intensity

in the Blue and Red wings of the line. The signal is calibrated by

placing a right circular polarizer in front of the KDP and introducing

a known artificial line shift using the exit slit positioning screw.

As mentioned above there are two main objective lenses for dif-

ferent observing modes. One is for observing the sun as a star in

integrated light. It has a focal length of 2.7 m which results in a

2.5 cm image located 3.8 m above the spectrograph entrance slit. This

makes a 2 cm diameter region at the entrance aperture which is evenly

illuminated by all parts of the sun ' s image. The purpose of this lens

is essentially to match the angular size of the sun to the acceptance

angle of the f/150 spectrograph. Various apertures and polarizers

can be placed at the "mean field image" to study large scale magnetic

fields or velocity oscillations.

The other main objective lens which can be used has a 6.5 m

focal length to make 6.1 cm image of the sun at the spectrograph

entrance aperture. Since the second flat guiding detector head is

mounted on an x-y positioning table, the second flat and thus the

image can be moved to scan the sun. Low resolution magnetograms and

3
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velocitygrams can be make in this way. At present a 3 arc-minute square

aperture is used to make daily magnetograms.

All optics between the objective lens and spectrograph entrance

slit are mounted on an optical bench which is attached with flexible

couplings to the lens mount and spectrograph head. This means the

optics (primarily the KDP) will remain aligned even if the top of the

building shifts a few mm due to differential heating throu,}i the day.

Presently these ^ptics consist of the KDP crystal and polarizer for the

magnetograph, a circular polarizer for magnetic calibration and a 300 A

bandpass interference filter to remove overlapping spectral orders,

Essentially all telescope functions except coarse mirror positioning

are controlled by a PDP11/10 computer. The computer, magnetograph,

and servo electronics are located near the spectrograph in the observing

room. In addition to controlling the instrument the computer reduces

and records data from the magnetograph. The computer operates as an

interpreter for a locally defined "telescope control language". The

interpreter was written in as3embly language but the operators need

to know only the telescope language. The instrument operates unattended

during most of the day. An operator is needed only to begin separate

observations when lenses need to be changed, analog electronics .adjusted,

data tapes changed, and so forth.

Mean Field Observations

The sun-as-a-star mean magnetic field is observed by a procedure

that is a combination of the methods used at Alt. Wilson and the Crimean

Astrophysical Observatory as described by Scherrer et al. (1977). The

field is observed by measuring the Zeeman splitting in the line Fe I

k5250R and the instrumental zero offset in the magnetically insensitive

line Fe I k 5124. We have found that even with very stable electronics

and optical alignment of the circular polarization analyzer (KT)P crystal

and linear polarizer), the magnetic zero 	 must be determined for

,..II, M 0 Now,_^4...^.



each observation. To minimize zero level errors and to investigate their

sources we determine two zero references for each observation.

A complete observation consists of four three -minute integrations

as follows: First the exit slits are positioned on ^ 5250 and the mag-

netograph magnetic signal is integrated with the KDP modulation turned

off. This gives an individual an indication of the offsets in the

amplifiers and analog to digital converters. Next we move the slits

and grating to the zero reference line X5124 and integrate the magnetic

signal. This yields the total magnetograph zero offset at that time.

Next we move: back to X5250 and measure the un-corrected solar mean field.

Finally we go back to k5124 and repeat the zero offset integration. The

electronic offset is first subtracted from each of the other three

integrations, then the mean field is computed as the difference between

the 0250 integration and the average of the 75124 measurements.

The reasons for this rather lengthy procedure can be seen in

Figure 4. This plot shows individual integrations for both X5250 and

XA 24 for one day. The X5124 signal is separately calibrated assuming

the same magnetic " sensitivity" as 7`5250. Note that as the instrumental

offset varies through the day the two curves follow each other, The

vertical distance between the two curves is interpreted as the solar

mean field. With three -minute integrations, the average formal statistical

uncertainty in the observations is 0.04 gauss. The entire observation

takes about twenty minutes and is repeated several times each day. A

daily average mean field is computed as a weighted average of the individual

observations. The weighting includes both the statistical uncertainty

and the magnitude of the zero offset as measured in 5124. The average

standard deviation of all the observations in one day is 0.05 gauss.

The daily averages are published by NOAA in Solar-Geophysical Data,

Prompt Reports.

Figure 5 is a plot of all mean field observations through 1976.

The plot is organized as 27 d °a.tels rotations with a 5-day shift to

facilitate comparison with interplanetary and geomagnetic quantities
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measured at the earth. Each individual observation is shown as a

vertical bar with length equal to twice the estimated uncertainty.

The daily averages are shown as horizontal bars with length one day

and centered about local noon. Careful inspection of Figure 7 shows

that while some of the daily variation is of solar origin, much if it

is probably from still un-corrected instrumental drifts. We feel,

however, that we can see any variations of solar origin at the 0.1

gauss level.

The smoothness of the curves is consistent with a stable large-

scale rotating structure. Severny (1971) has suggested that there

might be rather large (about 1 gauss) variations in the mean field

from one day to the next. However, with the possible exception of

12 August 1975, we do not see any short-term variation not due to

measurement noise or solar rotation. There appears to be a long term

drift in the data with approximately an annual period. This variation

is consistent with the expected contribution to the mean field from

the solar polar fields as the heliographic latitude of the observatory

changes through the year. There is also a consistent small positive

offset to the data of about 0.04 gauss. This may be of solar origin

or some as yet unrecognized instrumental weighting.

The 5124 zero offset signal has also been examined for long-

term trends. There is a slow variation in the signal with an amplitude

of 0.1 gauss. This may be from instrumental polarization changes as

suggested by Stix (1974) although it is of smaller magnitude and varies

with a shorter period than suggested.

A comment should be made about the observed magnitude of the

mean field. The average magnitude of the mean field observed at the

11t. Wilson and Crimean observatories for the years 1970 through 1974

was 0.5 gauss while the average magnitude of the Stanford mean field

for 1975 and 1976 was 0,12 gauss, We feel, however, that the rather

small value now observed is probably not in error, A preliminary com-

parison of the mean field observed at Stanford and the Crimea for the

6



Summer of 1975 shows substantial agreement in both the variation

and magnitude of the field. Also, a preliminary comparison of the

Stanford low-resolution daily magnetograms with averages of Mt. Wilson

magnetograms ( play and June 1976) show no significant difference in

magnetograph calibration. The small mean field magnitude may simply

be an indication of the small amount of net magnetic flux in the large-

scale structure at solar minimum. Due to the weighting inherent in the

sun-as-a-star observing method there is still some uncertainty in using

mean field magnitudes as a measure of actual photospheric net flux over

large regions. The observed mean field should be proportional to the

net weighted line-of-sight component of the solar field but will be an

underestimate of the magnitude by a factor of perhaps 2 to 5.

Interpretation

Severny et al. (1970) and Scherrer et al. (1977) have reported

that the mean solar field shows the same polarity pattern as the inter-

planetary magnetic field. Figure 6 shows the interplanetary magnetic

field polarity as inferred from geomagnetic fluctuations and the polarity

of the solar mean field in Bartels rotation plots. The solar field is

shown with the usual delay for solar wind transit time. The mean field

is shown as zero when the magnitude is comparable to the uncertainty in

measurement. 'Vote first that the large-scale pattern is remarkably

similar in both data. The large positive sector in the first half of

each rotation has been very stable throughout the 22 rot_tions with the

change in position (phase) occuring at the same time (rotation 1945).

Where there is a difference to note is in the appearance of the positive

sector in the last days of each rotation. This sector is always seen

in the mean field (refer also to Figure 5) but is only seen in the inter-

planetar,,• field in late summer and early fall when the earth is at

northern heliographic latitudes.

These correspondences n-e consistent with the model of the large-

scale solar and interplanetary field which has been developing in recent

years, (e.g. Svalgaard et al. 1975, Svalgaard and Wilcox 1976). In this



model, large-scale unipolar regions (that is, the net field averaged

over large areas) have roughly north-south boundaries in low latitudes

in the photosphere. The topography of the boundary between these

regions and the polar fields then is similar to the seam on a baseball.

The north-south extent of the boundary (which is a current sheet in

interplanetary space) gets progressively compressed as one moves out

from the sun due to the imbalance of polar and equatorial photospheric

not field strengths. At large distances ( 22 1 A.U,) the boundary begins

to look more like a wavy hat brim or ballerina skirt with INIF polarity

the same as the solar north pole above the boundary and the same as the

south pole when below the current sheet. In this model, a four-sector

structure can be seen in the mean field, but except when at high

northern heliographic latitudes, the earth is south of the smaller positive

sector. This simplified picture is sufficient to explain the overall

structure at solar minimum, but we expect some refinements will be

necessary to understand the situation near solar maximum when the polar

fields are smaller than the mean field magnitude and changing polarity,

but the correlation between the solar mean field and IDiF polarity is

still good.

1, __ .i ..- 4 __..

The new solar magnetograph at Stanford now provides us with a

tool to probe the large-scale organization and evolution of the photo-

spheric magnetic field. By using the mean field observations in con-

junction with the low-resolution, low-noise daily magnetograms _)egun

in May 1976) and IDIF observations we hope to better understand both

the solar magnetic field and the origin of the IDIF. More detailed

studies of the relationship of the mean field and interplanetary and

geomagnetic parameters, the low resolution magnetograms, and large-

scale velocity oscillation studies will be reported in future papers.
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Figure Captions

Figure 1	 -The Stanford Solar Observatory.

Figure 2	 -A schematic layout of the solar telescope optical system.

The 23m vertical Littrow spectrograph is not shown.

Figure 3	 -The telescope observing area. The main observing beam is

near the vertical optical bench (front, left ). The

guiding beam and X-1' positioner is displaced 61 cm to

the east (front, center). The image slicer, exit slits,

photomultiplier tubes, and pre-amplifiers are contained

in spectrograph head while the magnetograph and control

electronics are in the racks in the background.

Figure 4	 -The daily variation of the magnetic (light solid line)

and zero reference (dashed line) signals are shown for

27 December 1976 (1µT = 0.01 gauss?. The mean solar

magnetic field is taken to be the difference between

the observed quantities (heavy soild line). The

weighted average for the day is shown on the right as

MF.

Figure 5	 -The mean solar magnetic field for May 1975 through 1976

in µT (0.01 gauss). Individual measurements are shown

as vertical bars. The horizontal bars are weighted

daily averages as described in the text. The data is

plotted in 27 d Bartels rotations with a 4.5d displacement.

The actual date of the observation for the first day in

each rotation is shown.

Figure 6	 -Mean solar magnetic field polarity and inferred inter-

planetary magnetic field polarity in 27 d Bartels rotation

diagrams. The solar data is shown displaced 4.5 d to allow

for sun-earth solar wind transit time. The inferred IhiF

polarities after rotation 1956 are preliminary values.
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